hssm.simulate_data
hssm.simulate_data ¶
simulate_data(
model: str,
theta: dict[str, ArrayLike] | list[float] | ArrayLike,
size: int,
random_state: int | None = None,
output_df: bool = True,
**kwargs,
) -> np.ndarray | pd.DataFrame
Sample simulated data from specified distributions.
Parameters:
-
model(str) –A model name that must be supported in
ssm_simulators. For a detailed list of supported models, please see all fields in themodel_configdict here -
theta(dict[str, ArrayLike] | list[float] | ArrayLike) –Parameters of the process. Can be supplied as dictionary with parameter names as key and np.array or float as values. Can also be supplied as a list or 1D-array, however in this case the order of parameters is important and must match specifications here. Parameters can be specificed 'trial-wise', by supplying 1D arrays of shape
sizeto the dictionary, or by supplying a 2D array of shape(size, n_parameters)dicrectly. -
size(int) –The size of the data to be simulated. If
thetais a 2D ArrayLike, this parameter indicates the size of data to be simulated for each trial. -
random_state(optional, default:None) –A random seed for reproducibility.
-
output_df(optional, default:True) –If True, outputs a DataFrame with column names "rt", "response". Otherwise a 2-column numpy array, by default True.
-
kwargs(optional, default:{}) –Other arguments passed to ssms.basic_simulators.simulator.
Returns:
-
ndarray | DataFrame–An array or DataFrame with simulated data.