hssm.simulate_data
hssm.simulate_data ¶
simulate_data(
model: str,
theta: dict[str, ArrayLike] | list[float] | ArrayLike,
size: int,
random_state: int | None = None,
output_df: bool = True,
**kwargs
) -> np.ndarray | pd.DataFrame
Sample simulated data from specified distributions.
Parameters:
-
model
(str
) –A model name that must be supported in
ssm_simulators
. For a detailed list of supported models, please see all fields in themodel_config
dict here -
theta
(dict[str, ArrayLike] | list[float] | ArrayLike
) –Parameters of the process. Can be supplied as dictionary with parameter names as key and np.array or float as values. Can also be supplied as a list or 1D-array, however in this case the order of parameters is important and must match specifications here. Parameters can be specificed 'trial-wise', by supplying 1D arrays of shape
size
to the dictionary, or by supplying a 2D array of shape(size, n_parameters)
dicrectly. -
size
(int
) –The size of the data to be simulated. If
theta
is a 2D ArrayLike, this parameter indicates the size of data to be simulated for each trial. -
random_state
(optional
, default:None
) –A random seed for reproducibility.
-
output_df
(optional
, default:True
) –If True, outputs a DataFrame with column names "rt", "response". Otherwise a 2-column numpy array, by default True.
-
kwargs
(optional
, default:{}
) –Other arguments passed to ssms.basic_simulators.simulator.
Returns:
-
ndarray | DataFrame
–An array or DataFrame with simulated data.