hssm.likelihoods
Likelihood functions and distributions that use them.
hssm.likelihoods.logp_ddm ¶
logp_ddm(data: ndarray, v: float, a: float, z: float, t: float, err: float = 1e-15, k_terms: int = 20, epsilon: float = 1e-15) -> ndarray
Compute analytical likelihood for the DDM model with sv
.
Computes the log-likelihood of the drift diffusion model f(t|v,a,z) using the method and implementation of Navarro & Fuss, 2009.
Parameters:
-
data
(ndarray
) –data: 2-column numpy array of (response time, response)
-
v
(float
) –Mean drift rate. (-inf, inf).
-
a
(float
) –Value of decision upper bound. (0, inf).
-
z
(float
) –Normalized decision starting point. (0, 1).
-
t
(float
) –Non-decision time [0, inf).
-
err
(float
, default:1e-15
) –Error bound.
-
k_terms
(int
, default:20
) –number of terms to use to approximate the PDF.
-
epsilon
(float
, default:1e-15
) –A small positive number to prevent division by zero or taking the log of zero.
Returns:
-
ndarray
–The analytical likelihoods for DDM.
hssm.likelihoods.logp_ddm_bbox ¶
Compute blackbox log-likelihoods for ddm models.
hssm.likelihoods.logp_ddm_sdv ¶
logp_ddm_sdv(data: ndarray, v: float, a: float, z: float, t: float, sv: float, err: float = 1e-15, k_terms: int = 20, epsilon: float = 1e-15) -> ndarray
Compute the log-likelihood of the drift diffusion model f(t|v,a,z).
Using the method and implementation of Navarro & Fuss, 2009.
Parameters:
-
data
(ndarray
) –2-column numpy array of (response time, response)
-
v
(float
) –Mean drift rate. (-inf, inf).
-
a
(float
) –Value of decision upper bound. (0, inf).
-
z
(float
) –Normalized decision starting point. (0, 1).
-
t
(float
) –Non-decision time [0, inf).
-
sv
(float
) –Standard deviation of the drift rate [0, inf).
-
err
(float
, default:1e-15
) –Error bound.
-
k_terms
(int
, default:20
) –number of terms to use to approximate the PDF.
-
epsilon
(float
, default:1e-15
) –A small positive number to prevent division by zero or taking the log of zero.
Returns:
-
ndarray
–The log likelihood of the drift diffusion model with the standard deviation of sv.
hssm.likelihoods.logp_ddm_sdv_bbox ¶
Compute blackbox log-likelihoods for ddm_sdv models.
hssm.likelihoods.logp_full_ddm ¶
Compute blackbox log-likelihoods for full_ddm models.